Forward- and backpropagation in a silicon dendrite
نویسندگان
چکیده
We have developed an analog very-large-scale integrated (aVLSI) electronic circuit that emulates a compartmental model of a neuronal dendrite. The horizontal conductances of the compartmental model are implemented as a switched capacitor network. The transmembrane conductances are implemented as transconductance amplifiers. The electrotonic properties of our silicon cable are qualitatively similar to those of the ideal passive cable that is commonly used to model mathematically the electrotonic behavior of neurons. In particular the propagation of excitatory postsynaptic potentials is realistic, and we are easily able to emulate such classical synaptic integration models as direction selectivity. We are also able to emulate the backpropagation into the dendrite of single somatic spikes and bursts of spikes. Thus, this silicon dendrite is suitable for incorporation in detailed silicon neurons operating in real-time; in particular for the emulation of forward- and backpropagating electrical activities found in real neurons.
منابع مشابه
Spectral Estimation of Printed Colors Using a Scanner, Conventional Color Filters and applying backpropagation Neural Network
Reconstruction the spectral data of color samples using conventional color devices such as a digital camera or scanner is always of interest. Nowadays, multispectral imaging has introduced a feasible method to estimate the spectral reflectance of the images utilizing more than three-channel imaging. The goal of this study is to spectrally characterize a color scanner using a set of conventional...
متن کاملHardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks
Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardwa...
متن کاملSomadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat.
The invasion of fast (Na+) spikes from the soma into dendrites was studied in single pyramidal cells of the sensorimotor cortex by simultaneous extracellular recordings of the somatic and dendritic action potentials in freely behaving rats. Field potentials and unit activity were monitored with multiple-site silicon probes along trajectories perpendicular to the cortical layers at spatial inter...
متن کاملStudy the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy
Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...
متن کاملGlobal Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network
The optimum design of solar energy systems strongly depends on the accuracy of solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322 N lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2001